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Abstract

Vertebrates have high species-level variation in circulating hormone concentrations, and the func-
tional significance of this variation is largely unknown. We tested the hypothesis that interspecific
differences in hormone concentrations are partially driven by plant consumption, based on the
prediction that herbivores should have higher basal hormone levels to ‘outcompete’ plant endo-
crine disruptors. We compared levels of glucocorticoids (GCs), the hormones with the most avail-
able data, across 166 species. Using phylogenetically informed comparisons, we found that
herbivores had higher GC levels than carnivores. Furthermore, we found that the previously
described negative relationship between GC levels and body mass only held in herbivores, not car-
nivores, and that the effect of diet was greatest at extreme body sizes. These findings demonstrate
the far-reaching effects of diet on animal physiology, and provide evidence that herbivory influ-
ences circulating hormone concentrations. We urge future direct testing of the relationship
between phytochemical load and GC levels.
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INTRODUCTION

Vertebrates have high variation in circulating hormone levels
across species, and the evolutionary and functional drivers of
these species differences are of great interest. Although such
variation applies to many endocrine traits, species differences in
glucocorticoid (GC) levels has arguably generated the most
interest, and has been the subject of several recent meta-analy-
ses (e.g. Jessop et al. 2013; Haase et al. 2016;Francis et al. 2018;
Johnson et al. 2018; Martin et al. 2018; Vitousek et al. 2019).
Glucocorticoids (corticosterone, cortisol, or both, depending on
the species), are vertebrate steroid hormones that have pleiotro-
pic effects primarily related to energy use. GCs are secreted in a
circadian pattern to regulate activity patterns and waking beha-
viours, stimulating appetite and exploratory behaviour as well
as basic metabolic processes and regulation of glucose availabil-
ity (McEwen et al. 1988; Hau et al. 2016). They also play a well-
documented role in responding to stressors by adaptively
diverting energy towards survival and away from costly and
non-immediately essential processes (Sapolsky et al. 2000).
These physiological and behavioural effects are executed when
GCs pass from the blood into tissues and bind to intracellular
receptors, which act as transcription factors and affect the
expression of thousands of genes (Sacta et al. 2016).
Despite the critical role of GCs, levels of circulating GCs

show extreme inter-specific differences. For example, mar-
mosets (Callithrix argentata) have blood GC concentrations
approximately 80 times those of humans (Desantis et al. 2013).
To explain such differences, several meta-analyses have focused
on body size and metabolic rate as drivers of species variation,
due to the essential role of GCs in modulating use of energy
reserves. However, conclusions have been mixed. Baseline

(‘unstressed’) GCs were found to be negatively related to body
size in mammals and in in tetrapods as a whole, that is, smaller
animals tend to have higher GC levels (Haase et al. 2016; Fran-
cis et al. 2018; Vitousek et al. 2019). Yet, no relationship was
found between baseline GCs and body size in birds, reptiles, or
amphibians analysed alone (Francis et al. 2018). Furthermore,
no relationship between metabolic rate and baseline or stress-el-
evated GCs has been found across tetrapods nor within any
group of tetrapods (Francis et al. 2018; Vitousek et al. 2019).
These meta-analyses have revealed a great deal about the evolu-
tionary and environmental factors that predict species GC
levels, but there are still major unknown and untested drivers of
species differences in GCs to explain the broad scale patterns.
For example, to explain species differences in GCs in birds, Jes-
sop et al. (2013) considered the roles of body mass, latitude, ele-
vation, temperature and net primary productivity of the
environment. Their best model could only account for 14% of
the species variation in GC levels.
We propose that a key driver of species differences in GC

levels is diet: specifically herbivory and therefore consumption
of phytochemicals with allelopathic or endocrine disrupting
effects. Herbivores, but not carnivores, need to buffer phyto-
chemicals from passing into the tissues. With this, the func-
tion of their endogenous endocrine systems would be less
effective, and therefore herbivorous species would need to
compensate by increasing their levels of circulating hormones.
Phytochemicals (plant secondary metabolites) are biologi-

cally active compounds produced by plants. Plants produce
many phytochemicals that are similar in structure to verte-
brate hormones, and can thus interact with vertebrate endo-
crine receptors and binding proteins as endocrine disruptors
(Lambert & Edwards 2017). Such hormonally active
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phytochemicals have been found in all plant tissue types -
roots, stems, leaves, seeds, flowers, and fruit- and their tissue-
specific distribution depends on the species, plant life-stage,
and environmental triggers (Lambert & Edwards 2017).
Although most research in endocrine disrupting phytochemi-
cals has focused on phytoestrogens, there is also evidence that
there are a variety of plant metabolites that act as phytogluco-
corticoids (Leung et al. 2007; Wasserman et al. 2013; Martini
et al. 2016), and that these are common in some animal diets
(Wasserman et al. 2013).
Vertebrates that consume plants have two direct options to

prevent endocrine disrupting phytochemicals from binding to
their hormone receptors: either increase levels of binding pro-
teins in the blood as a phytochemical sink or decrease tissue
sensitivity to prevent phytochemicals from entering cells or
interacting with receptors. The first strategy has been proposed
to explain the evolution of albumin, which is the most abundant
carrier protein in the blood, but has a low specificity (Peters
1995). This results in albumin’s general binding or ‘fuzzy recog-
nition’ of a variety of hormones and other lipophilic com-
pounds. Baker (1998, 2002) proposed that due to this
generality, albumin acts as a sink for phytochemicals and other
endocrine disruptors in the environment by binding to them
and thus preventing them from interacting with receptors. Sup-
porting this hypothesis is experimental evidence that the pres-
ence of albumin decreases xenoestrogen binding to oestrogen
receptors (Arnold et al. 1996). The same principle could be
extended to the GC carrier protein, corticosteroid-binding glob-
ulin (CBG), which has a high specificity and affinity for GCs
(Seal & Doe 1966; Westphal 1986). Phytochemicals that are
similar enough in structure to glucocorticoids should be able to
be compete for and bind to CBG. Although the binding of phy-
toglucocorticoids to CBG has not been specifically tested to our
knowledge, some phytoestrogens are known to bind to sex-hor-
mone binding globulin, which, like CBG, also has high speci-
ficity and high affinity relative to albumin (Jury et al. 2000).
If herbivores use the first strategy and increase CBG levels

as a phytochemical sink, they should have higher levels of
CBG than carnivores. If herbivores use the second strategy
and decrease tissue sensitivity, they should have no difference
in CBG levels relative to carnivores. However, in both cases,
herbivores should have higher levels of circulating GCs than
carnivores, because of the disrupted access to GC receptors
whether by increased CBG binding or by mechanisms within
the tissues. We tested these predictions with previously pub-
lished databases (Desantis et al. 2013; Vitousek et al. 2019) of
species levels of total circulating GCs (both bound and
unbound GCs), free GCs (unbound only), and CBG levels.
We compared GC levels of species that were herbivorous, eat-
ing almost entirely plant matter, to species that were carnivo-
rous, eating virtually no plant matter. 166 species in these GC
datasets fell into these dietary categories, with 53 herbivores
and 113 carnivores (Fig. 1). We used generalised linear mixed
effect models with Markov Chain Monte Carlo sampling
(MCMCglmm) to compare species levels of total GCs, free
GCs, and CBG by diet type, accounting for phylogeny and
body mass. For a portion of species in the dataset (n = 117
species), additional factors were reported in the original stud-
ies during hormone sample collection: individual sex, breeding

status, dominant GC type (cortisol or corticosterone), and
whether the samples were collected as true baseline levels or
collected after potential trapping stress (‘nominal baseline’).
With this smaller dataset, we tested if the same dietary pat-
terns held when accounting for these factors.

METHODS

Species information

To test the association among species diet and total GCs levels,
hormone data were compiled from Desantis et al. (2013) and
from HormoneBase (Vitousek et al. 2018). HormoneBase con-
tains not only species with baseline GC data, but also species
with stress-induced GC data and testosterone data. We used a
subset of HormoneBase which included only the baseline total
GC data, published by Vitousek et al. (2019). Species levels of
CBG and free GCs were taken from Desantis et al. (2013) only,
as HormoneBase does not contain information on CBG levels.
CBG levels in Desantis et al. (2013) are reported as maximum
corticosteroid-binding capacity (MCBC); this measure is
described in detail in Delehanty & Boonstra (2009). 13 species
were duplicated in both the Desantis et al. (2013) database and
the Vitousek et al. (2019) database, the values from Vitousek
et al. were dropped to avoid repeated sampling of the same
study. This combined dataset resulted in 269 species.
We compiled dietary information for each species from

EltonTraits (Wilman et al. 2014), The Birds of North Ameri-
can (Rodewald 2015), AmphiBIO (Oliveira et al. 2017), Ani-
mal Diversity Web (https://animaldiversity.org), and the
primary literature. Primary studies were those where stomach
contents were dissected and separated into percent composi-
tion of contents, or time foraging was separated into percent
of time spent on particular food items. Adult diet was used.
References for all dietary information can be found in the
Supplementary materials. We then grouped food items into
the following dietary categories: animal matter (vertebrate and
invertebrate), and plant matter (of all types, including shoots,
stems, leaves, fruits, seeds, exudates). Fungi were included in
the plant matter category, as fungal consumption was typi-
cally not reported as its own category in dietary studies (e.g.
O’Brien & Kinnaird 1997; Okecha & Newton-Fisher 2006)
and thus there were not enough data on fungi alone to
include them separately. Fungi also produce a variety of sec-
ondary compounds and chemical defences (mycotoxins), some
of which are known to be endocrine disrupting. For example,
the mycotoxin Zearalenone is a notorious estrogenic endo-
crine disruptor, and its metabolites have also been found to
induce the production of cortisol (Kowalska et al. 2016).
Some studies have proposed that many phytochemicals in ter-
restrial plants may be derived from fungi, either by direct
transfer or horizontal gene transfer (Lehtonen et al. 2005;
Wink 2008). Hence, we determined that combining fungi and
plants consumption as a source of phytotoxins was warranted
from both a biological and methodological standpoint.
We recorded the maximum percent of animal or plant mat-

ter that made up in the diet for each species, as our goal was
to examine maximum potential exposure to plant phytochemi-
cals. For example, if a species had a diet of 20% plant matter
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in the winter, and 60% plant matter in the summer, the maxi-
mum percent plant matter was recorded as 60%. We then cat-
egorised carnivores and herbivores in the dataset. We
considered a species to be a carnivore if it had 10% or less
maximum plant matter consumption (we assumed values of
10% or less constituted accidental ingestion). In the same
way, we considered a species to be a herbivore if it had 10%
or less maximum animal matter consumption. Species that did
not fall into either dietary category were not used in the main
analysis, but we include an analysis with a mixed omnivorous
category in the supplemental material (Fig. S1, Table S1 and

S2). The herbivore and carnivore categorisation resulted in a
total GC dataset of 166 species: 45 mammals, 63 birds, 27
reptiles, 19 amphibians, and 12 fish (Fig. 1). 53 of these spe-
cies were herbivores and 113 were carnivores. The CBG data-
set contained 72 species, with 34 herbivores and 38 carnivores,
and the free GC dataset contained 45 species, with 22 herbi-
vores and 23 carnivores. All dietary breakdowns and assign-
ments can be found in the associated supplemental dataset. If
dietary information for a given species could not be found
(n = 25 species out of the original 269 in the combined data-
set), the species was not used and is not included in the above
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Figure 1 Time-calibrated ultrametric phylogeny of herbivorous (green dots) and carnivorous (red dots) species from Desantis et al. (2013) and Vitousek

et al. (2019). 166 species are represented: 53 herbivores and 113 carnivores.
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sample sizes. Species excluded for this reason are noted in the
supplemental dataset, with further notes given.
Species body mass was taken directly from the Vitousek

et al. (2019) dataset and from the above databases (Animal
Diversity web, AmphiBIO, etc.). If body mass was not listed
for a given species in any of these sources, the reference for
body mass is given in the supplemental dataset. Information
for other factors (sex, nominal or true base, breeding status)
were taken directly from the Vitousek et al. (2019) and Des-
tantis et al. (2013) datasets. Many types of breeding status
were reported in the latter dataset, and we consolidated them
to simply ‘breeding’ or ‘not breeding’. For example, when an
animal was listed as pregnant or lactating, we assigned them
to “breeding.” These assignments are also reported in the sup-
plemental dataset.

Phylogeny construction

An ultrametic time-calibrated phylogeny containing the 166
species was assembled. Lineage specific phylogenies were
grafted onto a backbone phylogeny that contained a represen-
tative species of each lineage found in the dataset. The back-
bone phylogeny was constructed using the Hedges et al. 2015
supertree, using the ‘TIMETREE’ online tool (http://www.ti
metree.org). Hagfish and cartilaginous fish are not represented
in the Hedges et al. 2015 supertree. Representative species for
these lineages were manually grafted onto the backbone phy-
logeny, node dates were estimated using the ‘NODETIME’
tool (http://www.timetree.org) developed by Kumar et al.
(2017). The following lineage species ultrametric time-cali-
brated phylogenies were used: cartilaginous fishes (Stein et al.
2018), ray-finned fishes (Rabosky et al. 2018), amphibians
(Jetz & Pyron 2018), turtles (Jaffe 2011), crocodilians (Oaks
2011), squamates (Zheng & Wiens 2016), birds (Jetz et al.
2012), and mammals (Upham et al. 2019).

Statistical analyses

We first tested the effect of diet type on species levels of total
GCs, CBG, and free GCs, while accounting for phylogeny
and body mass. Generalised linear mixed effect models with
Markov Chain Monte Carlo sampling (MCMCglmm) were
constructed to estimate the relationship between these endo-
crine traits and diet. Analyses were conducted using the pack-
age MCMCglmm (Hadfield 2010) in the R v3.5.2 statistical
environment (R Core Team 2019). Hormone data (ng/ml)
were natural log transformed prior to the fitting of models.
Body mass (g) data were also log transformed. Dietary cate-
gory, body mass, and the dietary category and body mass
interaction effect were fit as a fixed effect with carnivores trea-
ted as the intercept.
Phylogenetic structure was accounted for by fitting a species

level inverted relatedness matrix as a random effect. Priors for
random effects were set to an inverse gamma distribution
(V = 1, nu = 0.002). The error distribution was modelled with
the Gaussian family. Models were run for 1,000,000 iterations
with a burn-in period of 50 000 and a thinning interval of
200. Trace, density and auto-correlation function (ACF) plots
were inspected to assess stationarity in the MCMC chains.

MCMC chains were assessed to ensure autocorrelation values
less than 0.1 (Hadfield 2019). The models were fit two subse-
quent times and the Gelman-Rubin statistic diagnostic plots
were used to assess convergence of the three MCMC chains
(Gelman & Rubin 1992). Deviance information criterion
(DIC) was used to compare fitted models to intercept-only
models. Post-hoc analysis of diet categories was completed
through pairwise comparisons of the marginal estimate for
each dietary category. The calculation of marginal estimates
was completed using the emmeans package (Lenth 2018).
Models were re-fit with strong priors (V = 1, nu = 1) to
ensure that results were not sensitive to prior specification
(Wilson et al. 2010).
We additionally aimed to test for the effects of other poten-

tially important factors related to GC levels: sex, breeding sta-
tus, primary glucocorticoid type (cortisol or corticosterone)
and if the hormone samples were taken at true baseline or
nominal. True baseline indicates the animal was sampled in
< 3 min of capture, and thus samples should not reflect trap-
ping stress, and nominal baseline indicates that these animals
were sampled > 3 min after capture and thus these levels may
reflect stress caused by live-trapping. Out of the 166 species in
the total GC dataset, all of these factors were reported for 117.
Out of the 72 species in the CBG dataset, and the 45 species in
the free GC dataset, these factors were only reported for 22
and 21 species respectively. Thus, we did a second analysis of
these smaller, filtered datasets where all factors could be
included. In these models, the response factors were log GCs,
CBG and free GCs, and the fixed effects were dietary category,
log body mass (g), the dietary category and body mass interac-
tion, sex, reproductive status (breeding or not breeding), sam-
pling type (nominal or true base) and primary glucocorticoid
type (cortisol or corticosterone). Phylogenetic structure was
accounted for in the same manner as described above.

RESULTS

Species level diet and glucocorticoids

This first analysis examined the effect of dietary category on
levels of total GC (n = 166 species), free GC (n = 72 species)
and MCBC levels (n = 45 species) while accounting for body
mass and phylogeny by MCMCglmm. Model summaries of
the best-fit model (according to DIC score) for each response
variable are reported in Table 1. Data are presented as the
posterior mean and 95% CI. For total GCs, the best-fit model
was the one which included diet, body mass, and the diet and
body mass interaction (DIC = 508.92). This was relative to
the diet only model (DIC = 509.09), the null model
(DIC = 509.26), and the mass only model (DIC = 509.78).
Herbivores had higher total GC levels than carnivores
(b = 1.52 [0.50, 2.60] ng/ml, P < 0.01). The effect of body
mass on species total GC levels was dietary category depen-
dent (Fig. 2a), with a significant dietary category and mass
interaction (b = �0.22 [�0.39, �0.07] ng/ml, P < 0.01). Thus,
the effect of body mass on total GCs was negative for herbi-
vores (slope of the fit-line and credible interval: �0.17 [�0.31,
�0.03]) but neutral for carnivores (0.05 [�0.07, 0.15]) as the
credible interval crosses zero. This means that small
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herbivores tend to have higher GC levels than large herbi-
vores, but carnivores have no change in GC levels across
body sizes. For MCBC and free GCs, the full model was
again the best-fit model. There was a dietary category and
mass interaction effect on species MCBC levels (b = �0.25
[�0.49, �0.04] ng/ml, P < 0.05). However, no significant effect
of dietary category alone was found on species MCBC or free
GC levels (P = 0.09 and P = 0.11 respectively).

Additional factors affecting glucocorticoid levels

In the subset of the dataset where additional factors during
sample collection were reported, we tested the effects of diet
category, body mass, sex, breeding status, sampling type
(nominal vs. true base) and dominant GC type (cortisol vs.
corticosterone). This subset of the dataset included 117 species
with total GC data, 22 species with MCBC data, and 21

Table 1 Summaries from MCMCglmm where glucocorticoid levels (ng/ml) were fit to dietary category (carnivore or primarily herbivore), log body mass

(g), and the interaction effect of dietary category and log body mass. Data were binned at the species level.

Response variable Parameter Posterior mean [95% CI] Effective sampling p MCMC

Total glucocorticoids

(log ng/ml)

Intercept 3.85 [1.81, 5.84] 4750 < 0.01

Diet–herbivore 1.52 [0.50, 2.60] 4750 < 0.01

Mass (log g) 0.05 [�0.07, 0.15] 4967 0.43

Diet 3 mass �0.22 [�0.39, �0.07] 4750 < 0.01

Phylogeny 3.44 [1.48, 5.60] 4750 –
Residual 0.95 [0.65, 1.26] 4750 –

Free glucocorticoids (log ng/ml) Intercept 1.56 [�3.72, 7.13] 4332 0.51

Diet–herbivore 3.53 [�1.01, 7.70] 4750 0.11

Mass (log g) 0.02 [�0.34, 0.42] 4750 0.90

Diet x mass �0.41 [�0.94, 0.13] 4750 0.13

Phylogeny 21.23 [2.32, 51.63] 3983 –
Residual 1.16 [0.00, 2.56] 4483 –

Maximum corticosteroid-binding capacity

(log ng/ml)

Intercept 2.01 [�0.71, 4.58] 5034 0.12

Diet–herbivore 1.63 [�0.31, 3.37] 4750 0.09

Mass (log g) 0.15 [�0.01, 0.31] 4750 0.05

Diet 3 mass �0.25 [�0.49, 0.04] 4750 0.03

Phylogeny 5.24 [0.56, 10.36] 4380 –
Residual 0.57 [0.16, 1.08] 4471 –

MCMCglmm were fit to: (a) log total glucocorticoid levels (n = 166, r2(m) = 0.02, r2(c) = 0.79), (b) log free glucocorticoid levels (n = 45, r2(m) = 0.03,

r2(c) = 0.95), and (c) log maximum corticosteroid-binding capacity levels (n = 72, r2(m) = 0.03, r2(c) = 0.90).

Bold parameters indicate p MCMC < 0.05.
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Figure 2 (a) MCMCglmm model estimated effect of dietary category by log body mass (g) on log total glucocorticoid levels (ng/ml). Data were binned at

the species level. Ribbons denote the 95% credible interval of the estimate. Herbivores (n = 53) and carnivores (n = 113) are colored green and red,

respectively. (b) MCMCglmm model estimated effect of dietary category by log body mass (g), sex, breeding status, sampling type (true or nominal base),
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species with free GC data. Best-fit model summaries are
reported in Table 2. For total GCs, the best-fit model was the
omnibus model (i.e. all factors; DIC = 1603.75), relative to
the model with all factors except diet (DIC = 1606.09), the
model with all factors except the diet/mass interaction effect
(DIC = 1606.26), and the null model (DIC = 1651.12). Again,
herbivores had higher total GC levels than carnivores
(b = 1.15 [0.10, 2.18] ng/ml, P < 0.05) and there was an inter-
action between dietary type and body mass (b = �0.24
[�0.42, �0.04] ng/ml, P < 0.05) indicating that the relation-
ship between body mass and total GCs was dependent on
dietary category (Fig. 2b). In this model, again herbivores had
a negative relationship between GC levels and mass (slope
and credible interval: �0.36 [�0.53, �0.17]), and carnivores
had no change in GC levels across body sizes (�0.12 [�0.27,
0.02]). Sampling type and breeding status also affected total
GC levels, with higher levels at nominal base than true base
(b = 1.30 [0.90, 1.68], P < 0.01) and higher levels in breeding
than nonbreeding individuals (b = 0.24 [0.09, 0.40] ng/ml,
P < 0.01). Sex and GC type did not have an effect on total
GC levels (P = 0.33 and P = 0.74 respectively).
The best-fit model for MCBC included diet and the other

factors (sex, breeding, etc.), but not body mass or the body
mass and diet interaction. The only factor that had an effect

on MCBC levels was sex, with females being higher (b = 0.58
[0.32, 0.83], P < 0.01). The best-fit model for free GCs was
the omnibus model and the only factor that had an effect on
free GCs was sampling type, with nominal base being higher
(b = 1.88 [1.23, 2.59], P < 0.01).

DISCUSSION

We have shown that diet is a key factor associated with the
macroevolution of species differences in total GC levels. Phylo-
genetically informed comparisons supported the relationship
between diet type and total GC levels, with herbivores having
higher total GC levels than carnivores. Furthermore, the best-
fit models always included dietary category. The individual-
level analysis on the smaller dataset (Table 2) highlighted that
sampling type (nominal or true base) and breeding status do
have an effect on total GC levels across vertebrates, and these
factors are critical to record and account for. However, ulti-
mately both the species level total GC analysis and the individ-
ual level total GC analysis supported our central prediction:
that herbivores have higher GC levels than carnivores.
We found no species differences in CBG and free GCs for the

two dietary categories, and therefore no evidence that changes
in glucocorticoid binding generally acts as a phytochemical

Table 2 Summaries from MCMCglmm where glucocorticoid levels (ng/ml) were fit to dietary category (carnivore or herbivore), log body mass (g), the

interaction effect of dietary category and log body mass, sex (female, male), base (true, nominal) and breeding status (not breeding, breeding). Data were

binned at the individual level.

Response variable Parameter Posterior mean [95% CI] Effective sampling p MCMC

Total glucocorticoids

(log ng/ml)

Intercept 3.77 [0.62, 6.79] 4691 0.02

Diet - herbivore 1.15 [0.10, 2.18] 4750 0.03

Mass (log g) �0.12 [�0.27, 0.02] 4750 0.10

Sex - female �0.06 [�0.18, 0.06] 5188 0.33

Status - breeding 0.24 [0.09, 0.40] 4964 < 0.01

Sampling - nominal base 1.30 [0.90, 1.68] 4750 < 0.01

GC type - corticosterone -0.32 [�2.19, 1.73] 4750 0.74

Diet 3 mass -0.24 [�0.42, �0.04] 4750 0.02

Phylogeny 7.05 [4.35, 10.03] 5338 –
Residual 0.48 [0.42, 0.53] 4750 –

Free glucocorticoids (log ng/ml) Intercept -0.30 [�11.33, 9.73] 5216 0.98

Diet - herbivore 3.57 [�5.58, 11.72] 4750 0.41

Mass (log g) 0.19 [�0.56, 0.91] 5095 0.60

Sex - female -0.34 [�0.75, 0.06] 4806 0.10

Status - breeding -0.27 [�0.76, 0.22] 4750 0.28

Sampling - nominal base 1.88 [1.23, 2.59] 4750 < 0.01

GC type - corticosterone -0.70 [�6.62, 5.21] 4951 0.80

Diet x mass -0.52 [�1.47, 0.38] 4750 0.25

Phylogeny 44.80 [12.12, 87.43] 4750 -

Residual 0.86 [0.60, 1.13] 4420 -

Maximum corticosteroid-binding capacity

(log ng/ml)

Intercept 4.69 [1.39, 8.11] 4750 0.01

Diet - herbivore �1.00 [�2.89, 0.95] 4750 0.26

Sex - female 0.58 [0.32, 0.83] 4558 < 0.01

Status - breeding -0.29 [�0.59, 0.00] 4750 0.06

Sampling – nominal base 0.17 [�0.23, 0.54] 4750 0.40

GC type - corticosterone 1.90 [�0.39, 4.12] 4750 0.09

Phylogeny 6.76 [1.32, 14.58] 4523 –
Residual 0.40 [0.29, 0.53] 4523 –

MCMCglmm were fit to: (a) log total glucocorticoid levels (n = 117 species, 723 sampling points, r2(m) = 0.07, r2(c) = 0.94), (b) log free glucocorticoid

levels (n = 21 species, 105 sampling points, r2(m) = 0.02, r2(c) = 0.98), and (c) log maximum corticosteroid-binding capacity levels (n = 22 species, 117 sam-

pling points, r2(m) = 0.09, r2(c) = 0.95).
*Bold parameters indicate p MCMC < 0.05.
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buffer in herbivorous species. The only factor tested in these
analyses that affected CBG levels was sex, with females having
higher levels than males. While there could be species differ-
ences in albumin levels based on diet, and albumin binds to
GCs, we do not expect that interspecific changes in albumin
should drive changes in circulating hormone concentrations.
Fluctuations in albumin levels do not appear to greatly affect
free GC levels due to the low affinity/high dissociation between
albumin and GCs (Gudmand-Hoeyer & Ottesen 2018). Yet, it
is important to acknowledge the small sample size in the CBG
and free GC analyses, which had only a fraction of the species
that were present in the total GC analysis. With species level
pMCMC values of 0.09 for CBG dietary category and 0.11 for
free GC dietary category, we question if the effect of diet may
have reached significance with a more robust, high sample size
dataset. However, no such data exist, and we urge the collection
of CBG data in future studies.
The impact of dietary category on total GC levels supports

predictions for the herbivore strategy based on reduction of
tissue sensitivity and compensatory increase in GC levels. A
potential example of this strategy can be seen in the New
World monkeys, which have exceptionally high GCs levels
and low CBG binding capacity (Pugeat et al. 1984; Fuller
et al. 2004). New World monkeys are known to have tissue-
level resistance to GCs and several other hormones (Fuller
et al. 2004). The mechanism for GC resistance has been
demonstrated in three species of New World monkey which
have reduced glucocorticoid receptor function due to an over-
expression of the immunophilin FKBP51, which inhibits tran-
scriptional activity (Scammell et al. 2001; Stechschulte &
Sanchez 2011). These relationships demonstrate that to
understand the evolution of species circulating hormone
levels, it is critical to look at other components of endocrine
signalling systems, not just total circulating hormone concen-
trations. Here we test only the signal in plasma, not the
reception at the cellular level. While such testing remains dif-
ficult because of many possible mechanisms that could exist
to limit receptor action, it would be informative to compare
receptor expression levels and co-factor levels across a subset
of species, or to examine specific nucleotide and amino acid
changes in endocrine traits to test for directional selection
(Bonett 2016).
Another major result of our analyses is the interaction

between dietary category and body mass on total GC levels
(Fig. 2). We found that the previously reported negative rela-
tionship between total GC levels and body mass is only present
in herbivores, not carnivores, in this dataset. Because of this
dietary category and body mass interaction, the effect of diet
on total GC levels is greatest in small-bodied and large-bodied
vertebrates (Fig. 2). Whether higher GC levels in small herbi-
vores could potentially be related to phytochemical consump-
tion is unclear. On one hand, a given dose of a phytochemical
would be more concentrated in the blood of small animals and
more dilute in large ones (Lambdon & Hassall 2001). Thus,
small amounts of consumed endocrine disruptors in a small-
bodied animals should have greater ramifications for the endo-
crine system. On the other hand, some have argued that smal-
ler animals should be more phytochemically tolerant, due to
faster metabolism and detoxification rates (Freeland 1991),

though others have argued against this relationship (Clauss
et al. 2013). This diet and body mass interaction effect could
also partially explain why the negative body mass and GC
relationship has been found in mammals (Haase et al. 2016;
Francis et al. 2018), but not other vertebrate taxa analysed
alone (Francis et al. 2018), as herbivory is more prevalent in
mammals than other vertebrate groups (Dearing et al. 2005).
In any case, the simplest conclusion is that our analysis
demonstrates again that the relationship between body size
and GC is not robust across vertebrates. Furthermore, body
mass alone had no significant effect on total GC levels
(Tables 1 and 2).
While this meta-analysis demonstrates the effect of a her-

bivory on species total GC levels, we suggest, but cannot con-
clusively demonstrate, that this relationship may be driven by
ingestion of phytochemicals. Though herbivory has other
associations that may explain higher GC levels aside from
phytochemicals, some of these major alternative explanations
can be rejected. For example, it could be hypothesised that
herbivores have higher GC levels because they tend to be prey
species and experience chronic stress of predation. We can
reject this on two levels. First, our dataset includes many
small-bodied carnivores (Fig. 2) which are also prey them-
selves. For example, some of the lowest GC levels in the car-
nivore dataset are from brush-tailed phascogales (Phascogale
tapoatafa), American mink (Neovision vision), and ornate tree
lizards (Urosaurus ornatus), which are also all prey of other
predators. Second, while a direct encounter with a predator
will acutely raise GC levels, different species vary in whether
or not they experience chronic stress in response to predation.
Some species show elevation of GC levels in response to
increased predation risk (Dulude-de Broin et al. 2020),
whereas others do not (Boonstra 2013).
More specific testing of this phytochemical hypothesis is

needed. The dietary separations in these analyses are very
coarse and do not take into account species differences in spe-
cialised digestive or behavioural adaptations for dealing with
phytochemicals. Comparing the GC levels of closely related
species that are known to ingest different amounts of phyto-
chemicals would be informative. In addition, GC levels of spe-
cialist and generalist herbivores could be compared. While
specialist herbivores tend to consume plants with more phyto-
toxins than generalists do, they also have evolved more effec-
tive adaptations to prevent the absorption of these toxins into
the blood (Sorenson & Dearing 2003; Shipley et al. 2012).
Conversely, generalists ingest a variety of toxin types and are
more likely to have a broad anti-phytochemical response like
decreasing tissue sensitivity once the phytochemical is already
circulating, and therefore should have higher circulating hor-
mone levels to compensate. Finally, the same rules should
apply to other types of circulating hormones in addition to
GCs (e.g. reproductive hormones). Wynne-Edwards (2001)
made such a prediction about sex hormone levels in carni-
vores compared with herbivores, proposing that herbivores
should have increased levels of oestrogens to decrease the
effect of ingested phytoestrogens and other endocrine disrup-
tors (changing the ‘signal to noise ratio’). To the best of our
knowledge, this relationship has not been tested, as there are
no equivalent datasets of species average levels of oestrogens.
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